Metamath Proof Explorer


Theorem cshwcl

Description: A cyclically shifted word is a word over the same set as for the original word. (Contributed by AV, 16-May-2018) (Revised by AV, 21-May-2018) (Revised by AV, 27-Oct-2018)

Ref Expression
Assertion cshwcl WWordVWcyclShiftNWordV

Proof

Step Hyp Ref Expression
1 cshword WWordVNWcyclShiftN=WsubstrNmodWW++WprefixNmodW
2 swrdcl WWordVWsubstrNmodWWWordV
3 pfxcl WWordVWprefixNmodWWordV
4 ccatcl WsubstrNmodWWWordVWprefixNmodWWordVWsubstrNmodWW++WprefixNmodWWordV
5 2 3 4 syl2anc WWordVWsubstrNmodWW++WprefixNmodWWordV
6 5 adantr WWordVNWsubstrNmodWW++WprefixNmodWWordV
7 1 6 eqeltrd WWordVNWcyclShiftNWordV
8 7 expcom NWWordVWcyclShiftNWordV
9 cshnz ¬NWcyclShiftN=
10 wrd0 WordV
11 9 10 eqeltrdi ¬NWcyclShiftNWordV
12 11 a1d ¬NWWordVWcyclShiftNWordV
13 8 12 pm2.61i WWordVWcyclShiftNWordV