Metamath Proof Explorer


Definition df-csh

Description: Perform a cyclical shift for an arbitrary class. Meaningful only for words w e. Word S or at least functions over half-open ranges of nonnegative integers. (Contributed by Alexander van der Vekens, 20-May-2018) (Revised by Mario Carneiro/Alexander van der Vekens/ Gerard Lang, 17-Nov-2018) (Revised by AV, 4-Nov-2022)

Ref Expression
Assertion df-csh cyclShift=wf|l0fFn0..^l,nifw=wsubstrnmodww++wprefixnmodw

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccsh classcyclShift
1 vw setvarw
2 vf setvarf
3 vl setvarl
4 cn0 class0
5 2 cv setvarf
6 cc0 class0
7 cfzo class..^
8 3 cv setvarl
9 6 8 7 co class0..^l
10 5 9 wfn wfffFn0..^l
11 10 3 4 wrex wffl0fFn0..^l
12 11 2 cab classf|l0fFn0..^l
13 vn setvarn
14 cz class
15 1 cv setvarw
16 c0 class
17 15 16 wceq wffw=
18 csubstr classsubstr
19 13 cv setvarn
20 cmo classmod
21 chash class.
22 15 21 cfv classw
23 19 22 20 co classnmodw
24 23 22 cop classnmodww
25 15 24 18 co classwsubstrnmodww
26 cconcat class++
27 cpfx classprefix
28 15 23 27 co classwprefixnmodw
29 25 28 26 co classwsubstrnmodww++wprefixnmodw
30 17 16 29 cif classifw=wsubstrnmodww++wprefixnmodw
31 1 13 12 14 30 cmpo classwf|l0fFn0..^l,nifw=wsubstrnmodww++wprefixnmodw
32 0 31 wceq wffcyclShift=wf|l0fFn0..^l,nifw=wsubstrnmodww++wprefixnmodw