| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-csh | ⊢  cyclShift   =  ( 𝑤  ∈  { 𝑓  ∣  ∃ 𝑙  ∈  ℕ0 𝑓  Fn  ( 0 ..^ 𝑙 ) } ,  𝑛  ∈  ℤ  ↦  if ( 𝑤  =  ∅ ,  ∅ ,  ( ( 𝑤  substr  〈 ( 𝑛  mod  ( ♯ ‘ 𝑤 ) ) ,  ( ♯ ‘ 𝑤 ) 〉 )  ++  ( 𝑤  prefix  ( 𝑛  mod  ( ♯ ‘ 𝑤 ) ) ) ) ) ) | 
						
							| 2 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 3 |  | ovex | ⊢ ( ( 𝑤  substr  〈 ( 𝑛  mod  ( ♯ ‘ 𝑤 ) ) ,  ( ♯ ‘ 𝑤 ) 〉 )  ++  ( 𝑤  prefix  ( 𝑛  mod  ( ♯ ‘ 𝑤 ) ) ) )  ∈  V | 
						
							| 4 | 2 3 | ifex | ⊢ if ( 𝑤  =  ∅ ,  ∅ ,  ( ( 𝑤  substr  〈 ( 𝑛  mod  ( ♯ ‘ 𝑤 ) ) ,  ( ♯ ‘ 𝑤 ) 〉 )  ++  ( 𝑤  prefix  ( 𝑛  mod  ( ♯ ‘ 𝑤 ) ) ) ) )  ∈  V | 
						
							| 5 | 1 4 | dmmpo | ⊢ dom   cyclShift   =  ( { 𝑓  ∣  ∃ 𝑙  ∈  ℕ0 𝑓  Fn  ( 0 ..^ 𝑙 ) }  ×  ℤ ) | 
						
							| 6 |  | id | ⊢ ( ¬  𝑁  ∈  ℤ  →  ¬  𝑁  ∈  ℤ ) | 
						
							| 7 | 6 | intnand | ⊢ ( ¬  𝑁  ∈  ℤ  →  ¬  ( 𝑊  ∈  { 𝑓  ∣  ∃ 𝑙  ∈  ℕ0 𝑓  Fn  ( 0 ..^ 𝑙 ) }  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 8 |  | ndmovg | ⊢ ( ( dom   cyclShift   =  ( { 𝑓  ∣  ∃ 𝑙  ∈  ℕ0 𝑓  Fn  ( 0 ..^ 𝑙 ) }  ×  ℤ )  ∧  ¬  ( 𝑊  ∈  { 𝑓  ∣  ∃ 𝑙  ∈  ℕ0 𝑓  Fn  ( 0 ..^ 𝑙 ) }  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑊  cyclShift  𝑁 )  =  ∅ ) | 
						
							| 9 | 5 7 8 | sylancr | ⊢ ( ¬  𝑁  ∈  ℤ  →  ( 𝑊  cyclShift  𝑁 )  =  ∅ ) |