| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-csh |  |-  cyclShift = ( w e. { f | E. l e. NN0 f Fn ( 0 ..^ l ) } , n e. ZZ |-> if ( w = (/) , (/) , ( ( w substr <. ( n mod ( # ` w ) ) , ( # ` w ) >. ) ++ ( w prefix ( n mod ( # ` w ) ) ) ) ) ) | 
						
							| 2 |  | 0ex |  |-  (/) e. _V | 
						
							| 3 |  | ovex |  |-  ( ( w substr <. ( n mod ( # ` w ) ) , ( # ` w ) >. ) ++ ( w prefix ( n mod ( # ` w ) ) ) ) e. _V | 
						
							| 4 | 2 3 | ifex |  |-  if ( w = (/) , (/) , ( ( w substr <. ( n mod ( # ` w ) ) , ( # ` w ) >. ) ++ ( w prefix ( n mod ( # ` w ) ) ) ) ) e. _V | 
						
							| 5 | 1 4 | dmmpo |  |-  dom cyclShift = ( { f | E. l e. NN0 f Fn ( 0 ..^ l ) } X. ZZ ) | 
						
							| 6 |  | id |  |-  ( -. N e. ZZ -> -. N e. ZZ ) | 
						
							| 7 | 6 | intnand |  |-  ( -. N e. ZZ -> -. ( W e. { f | E. l e. NN0 f Fn ( 0 ..^ l ) } /\ N e. ZZ ) ) | 
						
							| 8 |  | ndmovg |  |-  ( ( dom cyclShift = ( { f | E. l e. NN0 f Fn ( 0 ..^ l ) } X. ZZ ) /\ -. ( W e. { f | E. l e. NN0 f Fn ( 0 ..^ l ) } /\ N e. ZZ ) ) -> ( W cyclShift N ) = (/) ) | 
						
							| 9 | 5 7 8 | sylancr |  |-  ( -. N e. ZZ -> ( W cyclShift N ) = (/) ) |