Metamath Proof Explorer


Theorem cvrle

Description: The covers relation implies the "less than or equal to" relation. (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses cvrle.b
|- B = ( Base ` K )
cvrle.l
|- .<_ = ( le ` K )
cvrle.c
|- C = ( 
Assertion cvrle
|- ( ( ( K e. A /\ X e. B /\ Y e. B ) /\ X C Y ) -> X .<_ Y )

Proof

Step Hyp Ref Expression
1 cvrle.b
 |-  B = ( Base ` K )
2 cvrle.l
 |-  .<_ = ( le ` K )
3 cvrle.c
 |-  C = ( 
4 eqid
 |-  ( lt ` K ) = ( lt ` K )
5 1 4 3 cvrlt
 |-  ( ( ( K e. A /\ X e. B /\ Y e. B ) /\ X C Y ) -> X ( lt ` K ) Y )
6 2 4 pltval
 |-  ( ( K e. A /\ X e. B /\ Y e. B ) -> ( X ( lt ` K ) Y <-> ( X .<_ Y /\ X =/= Y ) ) )
7 6 simprbda
 |-  ( ( ( K e. A /\ X e. B /\ Y e. B ) /\ X ( lt ` K ) Y ) -> X .<_ Y )
8 5 7 syldan
 |-  ( ( ( K e. A /\ X e. B /\ Y e. B ) /\ X C Y ) -> X .<_ Y )