Description: Nonnegative exponentiation with a real exponent is nonnegative. (Contributed by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | recxpcld.1 | |- ( ph -> A e. RR ) |
|
| recxpcld.2 | |- ( ph -> 0 <_ A ) |
||
| recxpcld.3 | |- ( ph -> B e. RR ) |
||
| Assertion | cxpge0d | |- ( ph -> 0 <_ ( A ^c B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recxpcld.1 | |- ( ph -> A e. RR ) |
|
| 2 | recxpcld.2 | |- ( ph -> 0 <_ A ) |
|
| 3 | recxpcld.3 | |- ( ph -> B e. RR ) |
|
| 4 | cxpge0 | |- ( ( A e. RR /\ 0 <_ A /\ B e. RR ) -> 0 <_ ( A ^c B ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> 0 <_ ( A ^c B ) ) |