Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | recxpcld.1 | |- ( ph -> A e. RR ) |
|
recxpcld.2 | |- ( ph -> 0 <_ A ) |
||
recxpcld.3 | |- ( ph -> B e. RR ) |
||
mulcxpd.4 | |- ( ph -> 0 <_ B ) |
||
cxple2d.5 | |- ( ph -> C e. RR+ ) |
||
Assertion | cxplt2d | |- ( ph -> ( A < B <-> ( A ^c C ) < ( B ^c C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recxpcld.1 | |- ( ph -> A e. RR ) |
|
2 | recxpcld.2 | |- ( ph -> 0 <_ A ) |
|
3 | recxpcld.3 | |- ( ph -> B e. RR ) |
|
4 | mulcxpd.4 | |- ( ph -> 0 <_ B ) |
|
5 | cxple2d.5 | |- ( ph -> C e. RR+ ) |
|
6 | cxplt2 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( A < B <-> ( A ^c C ) < ( B ^c C ) ) ) |
|
7 | 1 2 3 4 5 6 | syl221anc | |- ( ph -> ( A < B <-> ( A ^c C ) < ( B ^c C ) ) ) |