Metamath Proof Explorer


Theorem cxplt2d

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1 φA
recxpcld.2 φ0A
recxpcld.3 φB
mulcxpd.4 φ0B
cxple2d.5 φC+
Assertion cxplt2d φA<BAC<BC

Proof

Step Hyp Ref Expression
1 recxpcld.1 φA
2 recxpcld.2 φ0A
3 recxpcld.3 φB
4 mulcxpd.4 φ0B
5 cxple2d.5 φC+
6 cxplt2 A0AB0BC+A<BAC<BC
7 1 2 3 4 5 6 syl221anc φA<BAC<BC