Metamath Proof Explorer
Description: Ordering property for complex exponentiation. (Contributed by Mario
Carneiro, 30-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
recxpcld.1 |
|
|
|
recxpcld.2 |
|
|
|
recxpcld.3 |
|
|
|
mulcxpd.4 |
|
|
|
cxple2d.5 |
|
|
Assertion |
cxplt2d |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recxpcld.1 |
|
| 2 |
|
recxpcld.2 |
|
| 3 |
|
recxpcld.3 |
|
| 4 |
|
mulcxpd.4 |
|
| 5 |
|
cxple2d.5 |
|
| 6 |
|
cxplt2 |
|
| 7 |
1 2 3 4 5 6
|
syl221anc |
|