Metamath Proof Explorer


Theorem cxplt2

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion cxplt2 A0AB0BC+A<BAC<BC

Proof

Step Hyp Ref Expression
1 cxple2 B0BA0AC+BABCAC
2 1 3com12 A0AB0BC+BABCAC
3 2 notbid A0AB0BC+¬BA¬BCAC
4 simp1l A0AB0BC+A
5 simp2l A0AB0BC+B
6 4 5 ltnled A0AB0BC+A<B¬BA
7 simp1r A0AB0BC+0A
8 rpre C+C
9 8 3ad2ant3 A0AB0BC+C
10 recxpcl A0ACAC
11 4 7 9 10 syl3anc A0AB0BC+AC
12 simp2r A0AB0BC+0B
13 recxpcl B0BCBC
14 5 12 9 13 syl3anc A0AB0BC+BC
15 11 14 ltnled A0AB0BC+AC<BC¬BCAC
16 3 6 15 3bitr4d A0AB0BC+A<BAC<BC