Metamath Proof Explorer


Theorem cxple2a

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion cxple2a ABC0A0CABACBC

Proof

Step Hyp Ref Expression
1 simpl3 ABC0A0CAB0<CAB
2 simp11 ABC0A0CABA
3 2 adantr ABC0A0CAB0<CA
4 simpl2l ABC0A0CAB0<C0A
5 simp12 ABC0A0CABB
6 5 adantr ABC0A0CAB0<CB
7 0red ABC0A0CAB0<C0
8 7 3 6 4 1 letrd ABC0A0CAB0<C0B
9 simp13 ABC0A0CABC
10 9 anim1i ABC0A0CAB0<CC0<C
11 elrp C+C0<C
12 10 11 sylibr ABC0A0CAB0<CC+
13 cxple2 A0AB0BC+ABACBC
14 3 4 6 8 12 13 syl221anc ABC0A0CAB0<CABACBC
15 1 14 mpbid ABC0A0CAB0<CACBC
16 1le1 11
17 16 a1i ABC0A0CAB0=C11
18 2 recnd ABC0A0CABA
19 cxp0 AA0=1
20 18 19 syl ABC0A0CABA0=1
21 oveq2 0=CA0=AC
22 20 21 sylan9req ABC0A0CAB0=C1=AC
23 5 recnd ABC0A0CABB
24 cxp0 BB0=1
25 23 24 syl ABC0A0CABB0=1
26 oveq2 0=CB0=BC
27 25 26 sylan9req ABC0A0CAB0=C1=BC
28 17 22 27 3brtr3d ABC0A0CAB0=CACBC
29 simp2r ABC0A0CAB0C
30 0re 0
31 leloe 0C0C0<C0=C
32 30 9 31 sylancr ABC0A0CAB0C0<C0=C
33 29 32 mpbid ABC0A0CAB0<C0=C
34 15 28 33 mpjaodan ABC0A0CABACBC