Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | cxple2a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 | |
|
2 | simp11 | |
|
3 | 2 | adantr | |
4 | simpl2l | |
|
5 | simp12 | |
|
6 | 5 | adantr | |
7 | 0red | |
|
8 | 7 3 6 4 1 | letrd | |
9 | simp13 | |
|
10 | 9 | anim1i | |
11 | elrp | |
|
12 | 10 11 | sylibr | |
13 | cxple2 | |
|
14 | 3 4 6 8 12 13 | syl221anc | |
15 | 1 14 | mpbid | |
16 | 1le1 | |
|
17 | 16 | a1i | |
18 | 2 | recnd | |
19 | cxp0 | |
|
20 | 18 19 | syl | |
21 | oveq2 | |
|
22 | 20 21 | sylan9req | |
23 | 5 | recnd | |
24 | cxp0 | |
|
25 | 23 24 | syl | |
26 | oveq2 | |
|
27 | 25 26 | sylan9req | |
28 | 17 22 27 | 3brtr3d | |
29 | simp2r | |
|
30 | 0re | |
|
31 | leloe | |
|
32 | 30 9 31 | sylancr | |
33 | 29 32 | mpbid | |
34 | 15 28 33 | mpjaodan | |