Metamath Proof Explorer


Theorem cxp0

Description: Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxp0 AA0=1

Proof

Step Hyp Ref Expression
1 0nn0 00
2 cxpexp A00A0=A0
3 1 2 mpan2 AA0=A0
4 exp0 AA0=1
5 3 4 eqtrd AA0=1