Metamath Proof Explorer


Theorem cxple2a

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion cxple2a ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) → ( 𝐴𝑐 𝐶 ) ≤ ( 𝐵𝑐 𝐶 ) )

Proof

Step Hyp Ref Expression
1 simpl3 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) ∧ 0 < 𝐶 ) → 𝐴𝐵 )
2 simp11 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) → 𝐴 ∈ ℝ )
3 2 adantr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) ∧ 0 < 𝐶 ) → 𝐴 ∈ ℝ )
4 simpl2l ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) ∧ 0 < 𝐶 ) → 0 ≤ 𝐴 )
5 simp12 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) → 𝐵 ∈ ℝ )
6 5 adantr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) ∧ 0 < 𝐶 ) → 𝐵 ∈ ℝ )
7 0red ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) ∧ 0 < 𝐶 ) → 0 ∈ ℝ )
8 7 3 6 4 1 letrd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) ∧ 0 < 𝐶 ) → 0 ≤ 𝐵 )
9 simp13 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) → 𝐶 ∈ ℝ )
10 9 anim1i ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) ∧ 0 < 𝐶 ) → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) )
11 elrp ( 𝐶 ∈ ℝ+ ↔ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) )
12 10 11 sylibr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) ∧ 0 < 𝐶 ) → 𝐶 ∈ ℝ+ )
13 cxple2 ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴𝐵 ↔ ( 𝐴𝑐 𝐶 ) ≤ ( 𝐵𝑐 𝐶 ) ) )
14 3 4 6 8 12 13 syl221anc ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) ∧ 0 < 𝐶 ) → ( 𝐴𝐵 ↔ ( 𝐴𝑐 𝐶 ) ≤ ( 𝐵𝑐 𝐶 ) ) )
15 1 14 mpbid ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) ∧ 0 < 𝐶 ) → ( 𝐴𝑐 𝐶 ) ≤ ( 𝐵𝑐 𝐶 ) )
16 1le1 1 ≤ 1
17 16 a1i ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) ∧ 0 = 𝐶 ) → 1 ≤ 1 )
18 2 recnd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) → 𝐴 ∈ ℂ )
19 cxp0 ( 𝐴 ∈ ℂ → ( 𝐴𝑐 0 ) = 1 )
20 18 19 syl ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) → ( 𝐴𝑐 0 ) = 1 )
21 oveq2 ( 0 = 𝐶 → ( 𝐴𝑐 0 ) = ( 𝐴𝑐 𝐶 ) )
22 20 21 sylan9req ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) ∧ 0 = 𝐶 ) → 1 = ( 𝐴𝑐 𝐶 ) )
23 5 recnd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) → 𝐵 ∈ ℂ )
24 cxp0 ( 𝐵 ∈ ℂ → ( 𝐵𝑐 0 ) = 1 )
25 23 24 syl ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) → ( 𝐵𝑐 0 ) = 1 )
26 oveq2 ( 0 = 𝐶 → ( 𝐵𝑐 0 ) = ( 𝐵𝑐 𝐶 ) )
27 25 26 sylan9req ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) ∧ 0 = 𝐶 ) → 1 = ( 𝐵𝑐 𝐶 ) )
28 17 22 27 3brtr3d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) ∧ 0 = 𝐶 ) → ( 𝐴𝑐 𝐶 ) ≤ ( 𝐵𝑐 𝐶 ) )
29 simp2r ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) → 0 ≤ 𝐶 )
30 0re 0 ∈ ℝ
31 leloe ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 0 ≤ 𝐶 ↔ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) )
32 30 9 31 sylancr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) → ( 0 ≤ 𝐶 ↔ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) )
33 29 32 mpbid ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) → ( 0 < 𝐶 ∨ 0 = 𝐶 ) )
34 15 28 33 mpjaodan ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) ∧ 𝐴𝐵 ) → ( 𝐴𝑐 𝐶 ) ≤ ( 𝐵𝑐 𝐶 ) )