Metamath Proof Explorer


Theorem elrp

Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007)

Ref Expression
Assertion elrp ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑥 = 𝐴 → ( 0 < 𝑥 ↔ 0 < 𝐴 ) )
2 df-rp + = { 𝑥 ∈ ℝ ∣ 0 < 𝑥 }
3 1 2 elrab2 ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )