Description: Generalize cxpmul2 to negative integers. (Contributed by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cxp0d.1 | |- ( ph -> A e. CC ) |
|
| cxpefd.2 | |- ( ph -> A =/= 0 ) |
||
| cxpefd.3 | |- ( ph -> B e. CC ) |
||
| cxpmul2zd.4 | |- ( ph -> C e. ZZ ) |
||
| Assertion | cxpmul2zd | |- ( ph -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxp0d.1 | |- ( ph -> A e. CC ) |
|
| 2 | cxpefd.2 | |- ( ph -> A =/= 0 ) |
|
| 3 | cxpefd.3 | |- ( ph -> B e. CC ) |
|
| 4 | cxpmul2zd.4 | |- ( ph -> C e. ZZ ) |
|
| 5 | cxpmul2z | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ C e. ZZ ) ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) |
|
| 6 | 1 2 3 4 5 | syl22anc | |- ( ph -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) |