Description: A cycle is a walk. (Contributed by Alexander van der Vekens, 7-Nov-2017) (Revised by AV, 31-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cycliswlk | |- ( F ( Cycles ` G ) P -> F ( Walks ` G ) P ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cyclispth | |- ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) |
|
2 | pthiswlk | |- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
|
3 | 1 2 | syl | |- ( F ( Cycles ` G ) P -> F ( Walks ` G ) P ) |