Description: A cycle is a path. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 31-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cyclispth | |- ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cyclprop | |- ( F ( Cycles ` G ) P -> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
|
2 | 1 | simpld | |- ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) |