Metamath Proof Explorer


Theorem dalem14

Description: Lemma for dath . Planes Y and Z form a 3-dimensional space (when they are different). (Contributed by NM, 22-Jul-2012)

Ref Expression
Hypotheses dalema.ph
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )
dalemc.l
|- .<_ = ( le ` K )
dalemc.j
|- .\/ = ( join ` K )
dalemc.a
|- A = ( Atoms ` K )
dalem14.o
|- O = ( LPlanes ` K )
dalem14.v
|- V = ( LVols ` K )
dalem14.y
|- Y = ( ( P .\/ Q ) .\/ R )
dalem14.z
|- Z = ( ( S .\/ T ) .\/ U )
dalem14.w
|- W = ( Y .\/ C )
Assertion dalem14
|- ( ( ph /\ Y =/= Z ) -> ( Y .\/ Z ) e. V )

Proof

Step Hyp Ref Expression
1 dalema.ph
 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )
2 dalemc.l
 |-  .<_ = ( le ` K )
3 dalemc.j
 |-  .\/ = ( join ` K )
4 dalemc.a
 |-  A = ( Atoms ` K )
5 dalem14.o
 |-  O = ( LPlanes ` K )
6 dalem14.v
 |-  V = ( LVols ` K )
7 dalem14.y
 |-  Y = ( ( P .\/ Q ) .\/ R )
8 dalem14.z
 |-  Z = ( ( S .\/ T ) .\/ U )
9 dalem14.w
 |-  W = ( Y .\/ C )
10 1 2 3 4 5 7 8 9 dalem13
 |-  ( ( ph /\ Y =/= Z ) -> ( Y .\/ Z ) = W )
11 1 2 3 4 5 6 7 8 9 dalem9
 |-  ( ( ph /\ Y =/= Z ) -> W e. V )
12 10 11 eqeltrd
 |-  ( ( ph /\ Y =/= Z ) -> ( Y .\/ Z ) e. V )