Metamath Proof Explorer


Theorem dalem14

Description: Lemma for dath . Planes Y and Z form a 3-dimensional space (when they are different). (Contributed by NM, 22-Jul-2012)

Ref Expression
Hypotheses dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalemc.l = ( le ‘ 𝐾 )
dalemc.j = ( join ‘ 𝐾 )
dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem14.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem14.v 𝑉 = ( LVols ‘ 𝐾 )
dalem14.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem14.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem14.w 𝑊 = ( 𝑌 𝐶 )
Assertion dalem14 ( ( 𝜑𝑌𝑍 ) → ( 𝑌 𝑍 ) ∈ 𝑉 )

Proof

Step Hyp Ref Expression
1 dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalemc.l = ( le ‘ 𝐾 )
3 dalemc.j = ( join ‘ 𝐾 )
4 dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem14.o 𝑂 = ( LPlanes ‘ 𝐾 )
6 dalem14.v 𝑉 = ( LVols ‘ 𝐾 )
7 dalem14.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
8 dalem14.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
9 dalem14.w 𝑊 = ( 𝑌 𝐶 )
10 1 2 3 4 5 7 8 9 dalem13 ( ( 𝜑𝑌𝑍 ) → ( 𝑌 𝑍 ) = 𝑊 )
11 1 2 3 4 5 6 7 8 9 dalem9 ( ( 𝜑𝑌𝑍 ) → 𝑊𝑉 )
12 10 11 eqeltrd ( ( 𝜑𝑌𝑍 ) → ( 𝑌 𝑍 ) ∈ 𝑉 )