Metamath Proof Explorer


Theorem dalem7

Description: Lemma for dath . Analogue of dalem5 for T . (Contributed by NM, 21-Jul-2012)

Ref Expression
Hypotheses dalema.ph
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )
dalemc.l
|- .<_ = ( le ` K )
dalemc.j
|- .\/ = ( join ` K )
dalemc.a
|- A = ( Atoms ` K )
dalem6.o
|- O = ( LPlanes ` K )
dalem6.y
|- Y = ( ( P .\/ Q ) .\/ R )
dalem6.z
|- Z = ( ( S .\/ T ) .\/ U )
dalem6.w
|- W = ( Y .\/ C )
Assertion dalem7
|- ( ph -> T .<_ W )

Proof

Step Hyp Ref Expression
1 dalema.ph
 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )
2 dalemc.l
 |-  .<_ = ( le ` K )
3 dalemc.j
 |-  .\/ = ( join ` K )
4 dalemc.a
 |-  A = ( Atoms ` K )
5 dalem6.o
 |-  O = ( LPlanes ` K )
6 dalem6.y
 |-  Y = ( ( P .\/ Q ) .\/ R )
7 dalem6.z
 |-  Z = ( ( S .\/ T ) .\/ U )
8 dalem6.w
 |-  W = ( Y .\/ C )
9 1 2 3 4 6 7 dalemrot
 |-  ( ph -> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( Q e. A /\ R e. A /\ P e. A ) /\ ( T e. A /\ U e. A /\ S e. A ) ) /\ ( ( ( Q .\/ R ) .\/ P ) e. O /\ ( ( T .\/ U ) .\/ S ) e. O ) /\ ( ( -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) /\ -. C .<_ ( P .\/ Q ) ) /\ ( -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) /\ -. C .<_ ( S .\/ T ) ) /\ ( C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) /\ C .<_ ( P .\/ S ) ) ) ) )
10 biid
 |-  ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( Q e. A /\ R e. A /\ P e. A ) /\ ( T e. A /\ U e. A /\ S e. A ) ) /\ ( ( ( Q .\/ R ) .\/ P ) e. O /\ ( ( T .\/ U ) .\/ S ) e. O ) /\ ( ( -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) /\ -. C .<_ ( P .\/ Q ) ) /\ ( -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) /\ -. C .<_ ( S .\/ T ) ) /\ ( C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) /\ C .<_ ( P .\/ S ) ) ) ) <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( Q e. A /\ R e. A /\ P e. A ) /\ ( T e. A /\ U e. A /\ S e. A ) ) /\ ( ( ( Q .\/ R ) .\/ P ) e. O /\ ( ( T .\/ U ) .\/ S ) e. O ) /\ ( ( -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) /\ -. C .<_ ( P .\/ Q ) ) /\ ( -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) /\ -. C .<_ ( S .\/ T ) ) /\ ( C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) /\ C .<_ ( P .\/ S ) ) ) ) )
11 eqid
 |-  ( ( Q .\/ R ) .\/ P ) = ( ( Q .\/ R ) .\/ P )
12 eqid
 |-  ( ( T .\/ U ) .\/ S ) = ( ( T .\/ U ) .\/ S )
13 eqid
 |-  ( ( ( Q .\/ R ) .\/ P ) .\/ C ) = ( ( ( Q .\/ R ) .\/ P ) .\/ C )
14 10 2 3 4 5 11 12 13 dalem6
 |-  ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( Q e. A /\ R e. A /\ P e. A ) /\ ( T e. A /\ U e. A /\ S e. A ) ) /\ ( ( ( Q .\/ R ) .\/ P ) e. O /\ ( ( T .\/ U ) .\/ S ) e. O ) /\ ( ( -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) /\ -. C .<_ ( P .\/ Q ) ) /\ ( -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) /\ -. C .<_ ( S .\/ T ) ) /\ ( C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) /\ C .<_ ( P .\/ S ) ) ) ) -> T .<_ ( ( ( Q .\/ R ) .\/ P ) .\/ C ) )
15 9 14 syl
 |-  ( ph -> T .<_ ( ( ( Q .\/ R ) .\/ P ) .\/ C ) )
16 1 3 4 dalemqrprot
 |-  ( ph -> ( ( Q .\/ R ) .\/ P ) = ( ( P .\/ Q ) .\/ R ) )
17 6 16 eqtr4id
 |-  ( ph -> Y = ( ( Q .\/ R ) .\/ P ) )
18 17 oveq1d
 |-  ( ph -> ( Y .\/ C ) = ( ( ( Q .\/ R ) .\/ P ) .\/ C ) )
19 8 18 syl5eq
 |-  ( ph -> W = ( ( ( Q .\/ R ) .\/ P ) .\/ C ) )
20 15 19 breqtrrd
 |-  ( ph -> T .<_ W )