Metamath Proof Explorer


Theorem datisi

Description: "Datisi", one of the syllogisms of Aristotelian logic. All ph is ps , and some ph is ch , therefore some ch is ps . In Aristotelian notation, AII-3: MaP and MiS therefore SiP. (Contributed by David A. Wheeler, 28-Aug-2016) Shorten and reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses datisi.maj
|- A. x ( ph -> ps )
datisi.min
|- E. x ( ph /\ ch )
Assertion datisi
|- E. x ( ch /\ ps )

Proof

Step Hyp Ref Expression
1 datisi.maj
 |-  A. x ( ph -> ps )
2 datisi.min
 |-  E. x ( ph /\ ch )
3 exancom
 |-  ( E. x ( ph /\ ch ) <-> E. x ( ch /\ ph ) )
4 2 3 mpbi
 |-  E. x ( ch /\ ph )
5 1 4 darii
 |-  E. x ( ch /\ ps )