Metamath Proof Explorer


Theorem datisi

Description: "Datisi", one of the syllogisms of Aristotelian logic. All ph is ps , and some ph is ch , therefore some ch is ps . In Aristotelian notation, AII-3: MaP and MiS therefore SiP. (Contributed by David A. Wheeler, 28-Aug-2016) Shorten and reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses datisi.maj 𝑥 ( 𝜑𝜓 )
datisi.min 𝑥 ( 𝜑𝜒 )
Assertion datisi 𝑥 ( 𝜒𝜓 )

Proof

Step Hyp Ref Expression
1 datisi.maj 𝑥 ( 𝜑𝜓 )
2 datisi.min 𝑥 ( 𝜑𝜒 )
3 exancom ( ∃ 𝑥 ( 𝜑𝜒 ) ↔ ∃ 𝑥 ( 𝜒𝜑 ) )
4 2 3 mpbi 𝑥 ( 𝜒𝜑 )
5 1 4 darii 𝑥 ( 𝜒𝜓 )