| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrmhm.g |
|- G = ( DChr ` N ) |
| 2 |
|
dchrmhm.z |
|- Z = ( Z/nZ ` N ) |
| 3 |
|
dchrmhm.b |
|- D = ( Base ` G ) |
| 4 |
|
dchrelbas4.l |
|- L = ( ZRHom ` Z ) |
| 5 |
|
dchrzrh1.x |
|- ( ph -> X e. D ) |
| 6 |
|
dchrzrh1.a |
|- ( ph -> A e. ZZ ) |
| 7 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
| 8 |
1 2 3 7 5
|
dchrf |
|- ( ph -> X : ( Base ` Z ) --> CC ) |
| 9 |
1 3
|
dchrrcl |
|- ( X e. D -> N e. NN ) |
| 10 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 11 |
5 9 10
|
3syl |
|- ( ph -> N e. NN0 ) |
| 12 |
2 7 4
|
znzrhfo |
|- ( N e. NN0 -> L : ZZ -onto-> ( Base ` Z ) ) |
| 13 |
|
fof |
|- ( L : ZZ -onto-> ( Base ` Z ) -> L : ZZ --> ( Base ` Z ) ) |
| 14 |
11 12 13
|
3syl |
|- ( ph -> L : ZZ --> ( Base ` Z ) ) |
| 15 |
14 6
|
ffvelcdmd |
|- ( ph -> ( L ` A ) e. ( Base ` Z ) ) |
| 16 |
8 15
|
ffvelcdmd |
|- ( ph -> ( X ` ( L ` A ) ) e. CC ) |