Metamath Proof Explorer


Theorem decaddi

Description: Add two numerals M and N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses decaddi.1
|- A e. NN0
decaddi.2
|- B e. NN0
decaddi.3
|- N e. NN0
decaddi.4
|- M = ; A B
decaddi.5
|- ( B + N ) = C
Assertion decaddi
|- ( M + N ) = ; A C

Proof

Step Hyp Ref Expression
1 decaddi.1
 |-  A e. NN0
2 decaddi.2
 |-  B e. NN0
3 decaddi.3
 |-  N e. NN0
4 decaddi.4
 |-  M = ; A B
5 decaddi.5
 |-  ( B + N ) = C
6 0nn0
 |-  0 e. NN0
7 3 dec0h
 |-  N = ; 0 N
8 1 nn0cni
 |-  A e. CC
9 8 addid1i
 |-  ( A + 0 ) = A
10 1 2 6 3 4 7 9 5 decadd
 |-  ( M + N ) = ; A C