Metamath Proof Explorer
		
		
		
		Description:  Add two numerals M and N (no carry).  (Contributed by Mario
         Carneiro, 18-Feb-2014)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						decaddi.1 | 
						|- A e. NN0  | 
					
					
						 | 
						 | 
						decaddi.2 | 
						|- B e. NN0  | 
					
					
						 | 
						 | 
						decaddi.3 | 
						|- N e. NN0  | 
					
					
						 | 
						 | 
						decaddi.4 | 
						|- M = ; A B  | 
					
					
						 | 
						 | 
						decaddi.5 | 
						|- ( B + N ) = C  | 
					
				
					 | 
					Assertion | 
					decaddi | 
					|- ( M + N ) = ; A C  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							decaddi.1 | 
							 |-  A e. NN0  | 
						
						
							| 2 | 
							
								
							 | 
							decaddi.2 | 
							 |-  B e. NN0  | 
						
						
							| 3 | 
							
								
							 | 
							decaddi.3 | 
							 |-  N e. NN0  | 
						
						
							| 4 | 
							
								
							 | 
							decaddi.4 | 
							 |-  M = ; A B  | 
						
						
							| 5 | 
							
								
							 | 
							decaddi.5 | 
							 |-  ( B + N ) = C  | 
						
						
							| 6 | 
							
								
							 | 
							0nn0 | 
							 |-  0 e. NN0  | 
						
						
							| 7 | 
							
								3
							 | 
							dec0h | 
							 |-  N = ; 0 N  | 
						
						
							| 8 | 
							
								1
							 | 
							nn0cni | 
							 |-  A e. CC  | 
						
						
							| 9 | 
							
								8
							 | 
							addridi | 
							 |-  ( A + 0 ) = A  | 
						
						
							| 10 | 
							
								1 2 6 3 4 7 9 5
							 | 
							decadd | 
							 |-  ( M + N ) = ; A C  |