Metamath Proof Explorer
Description: Add two numerals M and N (no carry). (Contributed by Mario
Carneiro, 18-Feb-2014)
|
|
Ref |
Expression |
|
Hypotheses |
decaddi.1 |
|- A e. NN0 |
|
|
decaddi.2 |
|- B e. NN0 |
|
|
decaddi.3 |
|- N e. NN0 |
|
|
decaddi.4 |
|- M = ; A B |
|
|
decaddi.5 |
|- ( B + N ) = C |
|
Assertion |
decaddi |
|- ( M + N ) = ; A C |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
decaddi.1 |
|- A e. NN0 |
2 |
|
decaddi.2 |
|- B e. NN0 |
3 |
|
decaddi.3 |
|- N e. NN0 |
4 |
|
decaddi.4 |
|- M = ; A B |
5 |
|
decaddi.5 |
|- ( B + N ) = C |
6 |
|
0nn0 |
|- 0 e. NN0 |
7 |
3
|
dec0h |
|- N = ; 0 N |
8 |
1
|
nn0cni |
|- A e. CC |
9 |
8
|
addid1i |
|- ( A + 0 ) = A |
10 |
1 2 6 3 4 7 9 5
|
decadd |
|- ( M + N ) = ; A C |