| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decma.a |
|- A e. NN0 |
| 2 |
|
decma.b |
|- B e. NN0 |
| 3 |
|
decma.c |
|- C e. NN0 |
| 4 |
|
decma.d |
|- D e. NN0 |
| 5 |
|
decma.m |
|- M = ; A B |
| 6 |
|
decma.n |
|- N = ; C D |
| 7 |
|
decmac.p |
|- P e. NN0 |
| 8 |
|
decmac.f |
|- F e. NN0 |
| 9 |
|
decmac.g |
|- G e. NN0 |
| 10 |
|
decmac.e |
|- ( ( A x. P ) + ( C + G ) ) = E |
| 11 |
|
decmac.2 |
|- ( ( B x. P ) + D ) = ; G F |
| 12 |
|
10nn0 |
|- ; 1 0 e. NN0 |
| 13 |
|
dfdec10 |
|- ; A B = ( ( ; 1 0 x. A ) + B ) |
| 14 |
5 13
|
eqtri |
|- M = ( ( ; 1 0 x. A ) + B ) |
| 15 |
|
dfdec10 |
|- ; C D = ( ( ; 1 0 x. C ) + D ) |
| 16 |
6 15
|
eqtri |
|- N = ( ( ; 1 0 x. C ) + D ) |
| 17 |
|
dfdec10 |
|- ; G F = ( ( ; 1 0 x. G ) + F ) |
| 18 |
11 17
|
eqtri |
|- ( ( B x. P ) + D ) = ( ( ; 1 0 x. G ) + F ) |
| 19 |
12 1 2 3 4 14 16 7 8 9 10 18
|
nummac |
|- ( ( M x. P ) + N ) = ( ( ; 1 0 x. E ) + F ) |
| 20 |
|
dfdec10 |
|- ; E F = ( ( ; 1 0 x. E ) + F ) |
| 21 |
19 20
|
eqtr4i |
|- ( ( M x. P ) + N ) = ; E F |