Metamath Proof Explorer


Theorem decpmulnc

Description: Partial products algorithm for two digit multiplication, no carry. Compare muladdi . (Contributed by Steven Nguyen, 9-Dec-2022)

Ref Expression
Hypotheses decpmulnc.a
|- A e. NN0
decpmulnc.b
|- B e. NN0
decpmulnc.c
|- C e. NN0
decpmulnc.d
|- D e. NN0
decpmulnc.1
|- ( A x. C ) = E
decpmulnc.2
|- ( ( A x. D ) + ( B x. C ) ) = F
decpmulnc.3
|- ( B x. D ) = G
Assertion decpmulnc
|- ( ; A B x. ; C D ) = ; ; E F G

Proof

Step Hyp Ref Expression
1 decpmulnc.a
 |-  A e. NN0
2 decpmulnc.b
 |-  B e. NN0
3 decpmulnc.c
 |-  C e. NN0
4 decpmulnc.d
 |-  D e. NN0
5 decpmulnc.1
 |-  ( A x. C ) = E
6 decpmulnc.2
 |-  ( ( A x. D ) + ( B x. C ) ) = F
7 decpmulnc.3
 |-  ( B x. D ) = G
8 1 2 deccl
 |-  ; A B e. NN0
9 eqid
 |-  ; C D = ; C D
10 2 4 nn0mulcli
 |-  ( B x. D ) e. NN0
11 7 10 eqeltrri
 |-  G e. NN0
12 1 4 nn0mulcli
 |-  ( A x. D ) e. NN0
13 eqid
 |-  ; A B = ; A B
14 12 nn0cni
 |-  ( A x. D ) e. CC
15 2 3 nn0mulcli
 |-  ( B x. C ) e. NN0
16 15 nn0cni
 |-  ( B x. C ) e. CC
17 14 16 6 addcomli
 |-  ( ( B x. C ) + ( A x. D ) ) = F
18 1 2 12 13 3 5 17 decrmanc
 |-  ( ( ; A B x. C ) + ( A x. D ) ) = ; E F
19 eqid
 |-  ( A x. D ) = ( A x. D )
20 4 1 2 13 19 7 decmul1
 |-  ( ; A B x. D ) = ; ( A x. D ) G
21 8 3 4 9 11 12 18 20 decmul2c
 |-  ( ; A B x. ; C D ) = ; ; E F G