| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decpmulnc.a |
|- A e. NN0 |
| 2 |
|
decpmulnc.b |
|- B e. NN0 |
| 3 |
|
decpmulnc.c |
|- C e. NN0 |
| 4 |
|
decpmulnc.d |
|- D e. NN0 |
| 5 |
|
decpmulnc.1 |
|- ( A x. C ) = E |
| 6 |
|
decpmulnc.2 |
|- ( ( A x. D ) + ( B x. C ) ) = F |
| 7 |
|
decpmulnc.3 |
|- ( B x. D ) = G |
| 8 |
1 2
|
deccl |
|- ; A B e. NN0 |
| 9 |
|
eqid |
|- ; C D = ; C D |
| 10 |
2 4
|
nn0mulcli |
|- ( B x. D ) e. NN0 |
| 11 |
7 10
|
eqeltrri |
|- G e. NN0 |
| 12 |
1 4
|
nn0mulcli |
|- ( A x. D ) e. NN0 |
| 13 |
|
eqid |
|- ; A B = ; A B |
| 14 |
12
|
nn0cni |
|- ( A x. D ) e. CC |
| 15 |
2 3
|
nn0mulcli |
|- ( B x. C ) e. NN0 |
| 16 |
15
|
nn0cni |
|- ( B x. C ) e. CC |
| 17 |
14 16 6
|
addcomli |
|- ( ( B x. C ) + ( A x. D ) ) = F |
| 18 |
1 2 12 13 3 5 17
|
decrmanc |
|- ( ( ; A B x. C ) + ( A x. D ) ) = ; E F |
| 19 |
|
eqid |
|- ( A x. D ) = ( A x. D ) |
| 20 |
4 1 2 13 19 7
|
decmul1 |
|- ( ; A B x. D ) = ; ( A x. D ) G |
| 21 |
8 3 4 9 11 12 18 20
|
decmul2c |
|- ( ; A B x. ; C D ) = ; ; E F G |