Description: Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | deg1propd.b1 | |- ( ph -> B = ( Base ` R ) ) |
|
| deg1propd.b2 | |- ( ph -> B = ( Base ` S ) ) |
||
| deg1propd.p | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) ) |
||
| Assertion | deg1propd | |- ( ph -> ( deg1 ` R ) = ( deg1 ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1propd.b1 | |- ( ph -> B = ( Base ` R ) ) |
|
| 2 | deg1propd.b2 | |- ( ph -> B = ( Base ` S ) ) |
|
| 3 | deg1propd.p | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) ) |
|
| 4 | 1 2 3 | mdegpropd | |- ( ph -> ( 1o mDeg R ) = ( 1o mDeg S ) ) |
| 5 | eqid | |- ( deg1 ` R ) = ( deg1 ` R ) |
|
| 6 | 5 | deg1fval | |- ( deg1 ` R ) = ( 1o mDeg R ) |
| 7 | eqid | |- ( deg1 ` S ) = ( deg1 ` S ) |
|
| 8 | 7 | deg1fval | |- ( deg1 ` S ) = ( 1o mDeg S ) |
| 9 | 4 6 8 | 3eqtr4g | |- ( ph -> ( deg1 ` R ) = ( deg1 ` S ) ) |