Metamath Proof Explorer


Theorem deg1propd

Description: Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1propd.b1
|- ( ph -> B = ( Base ` R ) )
deg1propd.b2
|- ( ph -> B = ( Base ` S ) )
deg1propd.p
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) )
Assertion deg1propd
|- ( ph -> ( deg1 ` R ) = ( deg1 ` S ) )

Proof

Step Hyp Ref Expression
1 deg1propd.b1
 |-  ( ph -> B = ( Base ` R ) )
2 deg1propd.b2
 |-  ( ph -> B = ( Base ` S ) )
3 deg1propd.p
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) )
4 1 2 3 mdegpropd
 |-  ( ph -> ( 1o mDeg R ) = ( 1o mDeg S ) )
5 eqid
 |-  ( deg1 ` R ) = ( deg1 ` R )
6 5 deg1fval
 |-  ( deg1 ` R ) = ( 1o mDeg R )
7 eqid
 |-  ( deg1 ` S ) = ( deg1 ` S )
8 7 deg1fval
 |-  ( deg1 ` S ) = ( 1o mDeg S )
9 4 6 8 3eqtr4g
 |-  ( ph -> ( deg1 ` R ) = ( deg1 ` S ) )