Description: Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | deg1propd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| deg1propd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) | ||
| deg1propd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | ||
| Assertion | deg1propd | ⊢ ( 𝜑 → ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1propd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| 2 | deg1propd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) | |
| 3 | deg1propd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | |
| 4 | 1 2 3 | mdegpropd | ⊢ ( 𝜑 → ( 1o mDeg 𝑅 ) = ( 1o mDeg 𝑆 ) ) |
| 5 | eqid | ⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) | |
| 6 | 5 | deg1fval | ⊢ ( deg1 ‘ 𝑅 ) = ( 1o mDeg 𝑅 ) |
| 7 | eqid | ⊢ ( deg1 ‘ 𝑆 ) = ( deg1 ‘ 𝑆 ) | |
| 8 | 7 | deg1fval | ⊢ ( deg1 ‘ 𝑆 ) = ( 1o mDeg 𝑆 ) |
| 9 | 4 6 8 | 3eqtr4g | ⊢ ( 𝜑 → ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑆 ) ) |