Description: If a relation is disjoint, then it is equivalent to the equivalent cosets of the relation, inference version. (Contributed by Peter Mazsa, 30-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | detlem.1 | |- Disj R |
|
| Assertion | detlem | |- ( Disj R <-> EqvRel ,~ R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | detlem.1 | |- Disj R |
|
| 2 | disjim | |- ( Disj R -> EqvRel ,~ R ) |
|
| 3 | 1 | a1i | |- ( EqvRel ,~ R -> Disj R ) |
| 4 | 2 3 | impbii | |- ( Disj R <-> EqvRel ,~ R ) |