Metamath Proof Explorer


Theorem eldisjim

Description: If the elements of A are disjoint, then it has equivalent coelements (former prter1 ). Special case of disjim . (Contributed by Rodolfo Medina, 13-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 8-Feb-2018) ( Revised by Peter Mazsa, 23-Sep-2021.)

Ref Expression
Assertion eldisjim
|- ( ElDisj A -> CoElEqvRel A )

Proof

Step Hyp Ref Expression
1 disjim
 |-  ( Disj ( `' _E |` A ) -> EqvRel ,~ ( `' _E |` A ) )
2 df-eldisj
 |-  ( ElDisj A <-> Disj ( `' _E |` A ) )
3 df-coeleqvrel
 |-  ( CoElEqvRel A <-> EqvRel ,~ ( `' _E |` A ) )
4 1 2 3 3imtr4i
 |-  ( ElDisj A -> CoElEqvRel A )