Metamath Proof Explorer


Theorem eldisjim

Description: If the elements of A are disjoint, then it has equivalent coelements (former prter1 ). Special case of disjim . (Contributed by Rodolfo Medina, 13-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 8-Feb-2018) ( Revised by Peter Mazsa, 23-Sep-2021.)

Ref Expression
Assertion eldisjim ( ElDisj 𝐴 → CoElEqvRel 𝐴 )

Proof

Step Hyp Ref Expression
1 disjim ( Disj ( E ↾ 𝐴 ) → EqvRel ≀ ( E ↾ 𝐴 ) )
2 df-eldisj ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴 ) )
3 df-coeleqvrel ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴 ) )
4 1 2 3 3imtr4i ( ElDisj 𝐴 → CoElEqvRel 𝐴 )