Description: Define the disjoint elementhood relation predicate, i.e., the disjoint elementhood predicate. Read: the elements of A are disjoint. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is ( A e. ElDisjs <-> ElDisj A ) when A is a set, see eleldisjseldisj .
As of now, disjoint elementhood is defined as "partition" in set.mm : compare df-prt with dfeldisj5 . See also the comments of ~? dfmembpart2 and of ~? df-parts . (Contributed by Peter Mazsa, 17-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | df-eldisj | ⊢ ( ElDisj 𝐴 ↔ Disj ( ◡ E ↾ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cA | ⊢ 𝐴 | |
1 | 0 | weldisj | ⊢ ElDisj 𝐴 |
2 | cep | ⊢ E | |
3 | 2 | ccnv | ⊢ ◡ E |
4 | 3 0 | cres | ⊢ ( ◡ E ↾ 𝐴 ) |
5 | 4 | wdisjALTV | ⊢ Disj ( ◡ E ↾ 𝐴 ) |
6 | 1 5 | wb | ⊢ ( ElDisj 𝐴 ↔ Disj ( ◡ E ↾ 𝐴 ) ) |