Metamath Proof Explorer


Theorem dfeldisj5

Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021)

Ref Expression
Assertion dfeldisj5 ( ElDisj 𝐴 ↔ ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( 𝑢𝑣 ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 dfeldisj4 ( ElDisj 𝐴 ↔ ∀ 𝑥 ∃* 𝑢𝐴 𝑥𝑢 )
2 inecmo2 ( ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] E ∩ [ 𝑣 ] E ) = ∅ ) ∧ Rel E ) ↔ ( ∀ 𝑥 ∃* 𝑢𝐴 𝑢 E 𝑥 ∧ Rel E ) )
3 relcnv Rel E
4 3 biantru ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] E ∩ [ 𝑣 ] E ) = ∅ ) ↔ ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] E ∩ [ 𝑣 ] E ) = ∅ ) ∧ Rel E ) )
5 3 biantru ( ∀ 𝑥 ∃* 𝑢𝐴 𝑢 E 𝑥 ↔ ( ∀ 𝑥 ∃* 𝑢𝐴 𝑢 E 𝑥 ∧ Rel E ) )
6 2 4 5 3bitr4i ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] E ∩ [ 𝑣 ] E ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑢𝐴 𝑢 E 𝑥 )
7 eccnvep ( 𝑢 ∈ V → [ 𝑢 ] E = 𝑢 )
8 7 elv [ 𝑢 ] E = 𝑢
9 eccnvep ( 𝑣 ∈ V → [ 𝑣 ] E = 𝑣 )
10 9 elv [ 𝑣 ] E = 𝑣
11 8 10 ineq12i ( [ 𝑢 ] E ∩ [ 𝑣 ] E ) = ( 𝑢𝑣 )
12 11 eqeq1i ( ( [ 𝑢 ] E ∩ [ 𝑣 ] E ) = ∅ ↔ ( 𝑢𝑣 ) = ∅ )
13 12 orbi2i ( ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] E ∩ [ 𝑣 ] E ) = ∅ ) ↔ ( 𝑢 = 𝑣 ∨ ( 𝑢𝑣 ) = ∅ ) )
14 13 2ralbii ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] E ∩ [ 𝑣 ] E ) = ∅ ) ↔ ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( 𝑢𝑣 ) = ∅ ) )
15 brcnvep ( 𝑢 ∈ V → ( 𝑢 E 𝑥𝑥𝑢 ) )
16 15 elv ( 𝑢 E 𝑥𝑥𝑢 )
17 16 rmobii ( ∃* 𝑢𝐴 𝑢 E 𝑥 ↔ ∃* 𝑢𝐴 𝑥𝑢 )
18 17 albii ( ∀ 𝑥 ∃* 𝑢𝐴 𝑢 E 𝑥 ↔ ∀ 𝑥 ∃* 𝑢𝐴 𝑥𝑢 )
19 6 14 18 3bitr3i ( ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( 𝑢𝑣 ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑢𝐴 𝑥𝑢 )
20 1 19 bitr4i ( ElDisj 𝐴 ↔ ∀ 𝑢𝐴𝑣𝐴 ( 𝑢 = 𝑣 ∨ ( 𝑢𝑣 ) = ∅ ) )