Step |
Hyp |
Ref |
Expression |
1 |
|
dfeldisj4 |
⊢ ( ElDisj 𝐴 ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) |
2 |
|
inecmo2 |
⊢ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ◡ E ∩ [ 𝑣 ] ◡ E ) = ∅ ) ∧ Rel ◡ E ) ↔ ( ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 ◡ E 𝑥 ∧ Rel ◡ E ) ) |
3 |
|
relcnv |
⊢ Rel ◡ E |
4 |
3
|
biantru |
⊢ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ◡ E ∩ [ 𝑣 ] ◡ E ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ◡ E ∩ [ 𝑣 ] ◡ E ) = ∅ ) ∧ Rel ◡ E ) ) |
5 |
3
|
biantru |
⊢ ( ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 ◡ E 𝑥 ↔ ( ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 ◡ E 𝑥 ∧ Rel ◡ E ) ) |
6 |
2 4 5
|
3bitr4i |
⊢ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ◡ E ∩ [ 𝑣 ] ◡ E ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 ◡ E 𝑥 ) |
7 |
|
eccnvep |
⊢ ( 𝑢 ∈ V → [ 𝑢 ] ◡ E = 𝑢 ) |
8 |
7
|
elv |
⊢ [ 𝑢 ] ◡ E = 𝑢 |
9 |
|
eccnvep |
⊢ ( 𝑣 ∈ V → [ 𝑣 ] ◡ E = 𝑣 ) |
10 |
9
|
elv |
⊢ [ 𝑣 ] ◡ E = 𝑣 |
11 |
8 10
|
ineq12i |
⊢ ( [ 𝑢 ] ◡ E ∩ [ 𝑣 ] ◡ E ) = ( 𝑢 ∩ 𝑣 ) |
12 |
11
|
eqeq1i |
⊢ ( ( [ 𝑢 ] ◡ E ∩ [ 𝑣 ] ◡ E ) = ∅ ↔ ( 𝑢 ∩ 𝑣 ) = ∅ ) |
13 |
12
|
orbi2i |
⊢ ( ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ◡ E ∩ [ 𝑣 ] ◡ E ) = ∅ ) ↔ ( 𝑢 = 𝑣 ∨ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
14 |
13
|
2ralbii |
⊢ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ◡ E ∩ [ 𝑣 ] ◡ E ) = ∅ ) ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
15 |
|
brcnvep |
⊢ ( 𝑢 ∈ V → ( 𝑢 ◡ E 𝑥 ↔ 𝑥 ∈ 𝑢 ) ) |
16 |
15
|
elv |
⊢ ( 𝑢 ◡ E 𝑥 ↔ 𝑥 ∈ 𝑢 ) |
17 |
16
|
rmobii |
⊢ ( ∃* 𝑢 ∈ 𝐴 𝑢 ◡ E 𝑥 ↔ ∃* 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) |
18 |
17
|
albii |
⊢ ( ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 ◡ E 𝑥 ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) |
19 |
6 14 18
|
3bitr3i |
⊢ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( 𝑢 ∩ 𝑣 ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) |
20 |
1 19
|
bitr4i |
⊢ ( ElDisj 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |