Step |
Hyp |
Ref |
Expression |
1 |
|
dfeldisj4 |
|- ( ElDisj A <-> A. x E* u e. A x e. u ) |
2 |
|
inecmo2 |
|- ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] `' _E i^i [ v ] `' _E ) = (/) ) /\ Rel `' _E ) <-> ( A. x E* u e. A u `' _E x /\ Rel `' _E ) ) |
3 |
|
relcnv |
|- Rel `' _E |
4 |
3
|
biantru |
|- ( A. u e. A A. v e. A ( u = v \/ ( [ u ] `' _E i^i [ v ] `' _E ) = (/) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] `' _E i^i [ v ] `' _E ) = (/) ) /\ Rel `' _E ) ) |
5 |
3
|
biantru |
|- ( A. x E* u e. A u `' _E x <-> ( A. x E* u e. A u `' _E x /\ Rel `' _E ) ) |
6 |
2 4 5
|
3bitr4i |
|- ( A. u e. A A. v e. A ( u = v \/ ( [ u ] `' _E i^i [ v ] `' _E ) = (/) ) <-> A. x E* u e. A u `' _E x ) |
7 |
|
eccnvep |
|- ( u e. _V -> [ u ] `' _E = u ) |
8 |
7
|
elv |
|- [ u ] `' _E = u |
9 |
|
eccnvep |
|- ( v e. _V -> [ v ] `' _E = v ) |
10 |
9
|
elv |
|- [ v ] `' _E = v |
11 |
8 10
|
ineq12i |
|- ( [ u ] `' _E i^i [ v ] `' _E ) = ( u i^i v ) |
12 |
11
|
eqeq1i |
|- ( ( [ u ] `' _E i^i [ v ] `' _E ) = (/) <-> ( u i^i v ) = (/) ) |
13 |
12
|
orbi2i |
|- ( ( u = v \/ ( [ u ] `' _E i^i [ v ] `' _E ) = (/) ) <-> ( u = v \/ ( u i^i v ) = (/) ) ) |
14 |
13
|
2ralbii |
|- ( A. u e. A A. v e. A ( u = v \/ ( [ u ] `' _E i^i [ v ] `' _E ) = (/) ) <-> A. u e. A A. v e. A ( u = v \/ ( u i^i v ) = (/) ) ) |
15 |
|
brcnvep |
|- ( u e. _V -> ( u `' _E x <-> x e. u ) ) |
16 |
15
|
elv |
|- ( u `' _E x <-> x e. u ) |
17 |
16
|
rmobii |
|- ( E* u e. A u `' _E x <-> E* u e. A x e. u ) |
18 |
17
|
albii |
|- ( A. x E* u e. A u `' _E x <-> A. x E* u e. A x e. u ) |
19 |
6 14 18
|
3bitr3i |
|- ( A. u e. A A. v e. A ( u = v \/ ( u i^i v ) = (/) ) <-> A. x E* u e. A x e. u ) |
20 |
1 19
|
bitr4i |
|- ( ElDisj A <-> A. u e. A A. v e. A ( u = v \/ ( u i^i v ) = (/) ) ) |