Step |
Hyp |
Ref |
Expression |
1 |
|
df-eldisj |
|- ( ElDisj A <-> Disj ( `' _E |` A ) ) |
2 |
|
relres |
|- Rel ( `' _E |` A ) |
3 |
|
dfdisjALTV4 |
|- ( Disj ( `' _E |` A ) <-> ( A. x E* u u ( `' _E |` A ) x /\ Rel ( `' _E |` A ) ) ) |
4 |
2 3
|
mpbiran2 |
|- ( Disj ( `' _E |` A ) <-> A. x E* u u ( `' _E |` A ) x ) |
5 |
|
brcnvepres |
|- ( ( u e. _V /\ x e. _V ) -> ( u ( `' _E |` A ) x <-> ( u e. A /\ x e. u ) ) ) |
6 |
5
|
el2v |
|- ( u ( `' _E |` A ) x <-> ( u e. A /\ x e. u ) ) |
7 |
6
|
mobii |
|- ( E* u u ( `' _E |` A ) x <-> E* u ( u e. A /\ x e. u ) ) |
8 |
|
df-rmo |
|- ( E* u e. A x e. u <-> E* u ( u e. A /\ x e. u ) ) |
9 |
7 8
|
bitr4i |
|- ( E* u u ( `' _E |` A ) x <-> E* u e. A x e. u ) |
10 |
9
|
albii |
|- ( A. x E* u u ( `' _E |` A ) x <-> A. x E* u e. A x e. u ) |
11 |
1 4 10
|
3bitri |
|- ( ElDisj A <-> A. x E* u e. A x e. u ) |