Metamath Proof Explorer


Theorem eldisjs

Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021)

Ref Expression
Assertion eldisjs ( 𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) )

Proof

Step Hyp Ref Expression
1 dfdisjs Disjs = { 𝑟 ∈ Rels ∣ ≀ 𝑟 ∈ CnvRefRels }
2 cnveq ( 𝑟 = 𝑅 𝑟 = 𝑅 )
3 2 cosseqd ( 𝑟 = 𝑅 → ≀ 𝑟 = ≀ 𝑅 )
4 3 eleq1d ( 𝑟 = 𝑅 → ( ≀ 𝑟 ∈ CnvRefRels ↔ ≀ 𝑅 ∈ CnvRefRels ) )
5 1 4 rabeqel ( 𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) )