Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eldisjs2 | ⊢ ( 𝑅 ∈ Disjs ↔ ( ≀ ◡ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldisjs | ⊢ ( 𝑅 ∈ Disjs ↔ ( ≀ ◡ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) ) | |
2 | cosselcnvrefrels2 | ⊢ ( ≀ ◡ 𝑅 ∈ CnvRefRels ↔ ( ≀ ◡ 𝑅 ⊆ I ∧ ≀ ◡ 𝑅 ∈ Rels ) ) | |
3 | cosscnvelrels | ⊢ ( 𝑅 ∈ Rels → ≀ ◡ 𝑅 ∈ Rels ) | |
4 | 3 | biantrud | ⊢ ( 𝑅 ∈ Rels → ( ≀ ◡ 𝑅 ⊆ I ↔ ( ≀ ◡ 𝑅 ⊆ I ∧ ≀ ◡ 𝑅 ∈ Rels ) ) ) |
5 | 2 4 | bitr4id | ⊢ ( 𝑅 ∈ Rels → ( ≀ ◡ 𝑅 ∈ CnvRefRels ↔ ≀ ◡ 𝑅 ⊆ I ) ) |
6 | 5 | pm5.32ri | ⊢ ( ( ≀ ◡ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) ↔ ( ≀ ◡ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ) |
7 | 1 6 | bitri | ⊢ ( 𝑅 ∈ Disjs ↔ ( ≀ ◡ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ) |