Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldisjs2 | ⊢ ( 𝑅 ∈ Disjs ↔ ( ≀ ◡ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eldisjs | ⊢ ( 𝑅 ∈ Disjs ↔ ( ≀ ◡ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) ) | |
| 2 | cosselcnvrefrels2 | ⊢ ( ≀ ◡ 𝑅 ∈ CnvRefRels ↔ ( ≀ ◡ 𝑅 ⊆ I ∧ ≀ ◡ 𝑅 ∈ Rels ) ) | |
| 3 | cosscnvelrels | ⊢ ( 𝑅 ∈ Rels → ≀ ◡ 𝑅 ∈ Rels ) | |
| 4 | 3 | biantrud | ⊢ ( 𝑅 ∈ Rels → ( ≀ ◡ 𝑅 ⊆ I ↔ ( ≀ ◡ 𝑅 ⊆ I ∧ ≀ ◡ 𝑅 ∈ Rels ) ) ) | 
| 5 | 2 4 | bitr4id | ⊢ ( 𝑅 ∈ Rels → ( ≀ ◡ 𝑅 ∈ CnvRefRels ↔ ≀ ◡ 𝑅 ⊆ I ) ) | 
| 6 | 5 | pm5.32ri | ⊢ ( ( ≀ ◡ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) ↔ ( ≀ ◡ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ) | 
| 7 | 1 6 | bitri | ⊢ ( 𝑅 ∈ Disjs ↔ ( ≀ ◡ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ) |