Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 25-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cosselcnvrefrels2 | ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elcnvrefrels2 | ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ∧ ≀ 𝑅 ∈ Rels ) ) | |
2 | cossssid | ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ) | |
3 | 2 | anbi1i | ⊢ ( ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) ↔ ( ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ∧ ≀ 𝑅 ∈ Rels ) ) |
4 | 1 3 | bitr4i | ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) ) |