Step |
Hyp |
Ref |
Expression |
1 |
|
dfcnvrefrels2 |
⊢ CnvRefRels = { 𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) } |
2 |
|
id |
⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) |
3 |
|
dmeq |
⊢ ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 ) |
4 |
|
rneq |
⊢ ( 𝑟 = 𝑅 → ran 𝑟 = ran 𝑅 ) |
5 |
3 4
|
xpeq12d |
⊢ ( 𝑟 = 𝑅 → ( dom 𝑟 × ran 𝑟 ) = ( dom 𝑅 × ran 𝑅 ) ) |
6 |
5
|
ineq2d |
⊢ ( 𝑟 = 𝑅 → ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) = ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ) |
7 |
2 6
|
sseq12d |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ) |
8 |
1 7
|
rabeqel |
⊢ ( 𝑅 ∈ CnvRefRels ↔ ( 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ 𝑅 ∈ Rels ) ) |