Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 30-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cosselcnvrefrels3 | ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ∧ ≀ 𝑅 ∈ Rels ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosselcnvrefrels2 | ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) ) | |
2 | cossssid3 | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ) | |
3 | 2 | anbi1i | ⊢ ( ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) ↔ ( ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ∧ ≀ 𝑅 ∈ Rels ) ) |
4 | 1 3 | bitri | ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ∀ 𝑢 ∀ 𝑥 ∀ 𝑦 ( ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ∧ ≀ 𝑅 ∈ Rels ) ) |