Metamath Proof Explorer


Theorem cosselcnvrefrels3

Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 30-Aug-2021)

Ref Expression
Assertion cosselcnvrefrels3 ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ∀ 𝑢𝑥𝑦 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ∧ ≀ 𝑅 ∈ Rels ) )

Proof

Step Hyp Ref Expression
1 cosselcnvrefrels2 ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) )
2 cossssid3 ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑢𝑥𝑦 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) )
3 2 anbi1i ( ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) ↔ ( ∀ 𝑢𝑥𝑦 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ∧ ≀ 𝑅 ∈ Rels ) )
4 1 3 bitri ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ∀ 𝑢𝑥𝑦 ( ( 𝑢 𝑅 𝑥𝑢 𝑅 𝑦 ) → 𝑥 = 𝑦 ) ∧ ≀ 𝑅 ∈ Rels ) )