Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 30-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cosselcnvrefrels3 | |- ( ,~ R e. CnvRefRels <-> ( A. u A. x A. y ( ( u R x /\ u R y ) -> x = y ) /\ ,~ R e. Rels ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosselcnvrefrels2 | |- ( ,~ R e. CnvRefRels <-> ( ,~ R C_ _I /\ ,~ R e. Rels ) ) |
|
2 | cossssid3 | |- ( ,~ R C_ _I <-> A. u A. x A. y ( ( u R x /\ u R y ) -> x = y ) ) |
|
3 | 2 | anbi1i | |- ( ( ,~ R C_ _I /\ ,~ R e. Rels ) <-> ( A. u A. x A. y ( ( u R x /\ u R y ) -> x = y ) /\ ,~ R e. Rels ) ) |
4 | 1 3 | bitri | |- ( ,~ R e. CnvRefRels <-> ( A. u A. x A. y ( ( u R x /\ u R y ) -> x = y ) /\ ,~ R e. Rels ) ) |