Metamath Proof Explorer


Theorem cosselcnvrefrels3

Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 30-Aug-2021)

Ref Expression
Assertion cosselcnvrefrels3
|- ( ,~ R e. CnvRefRels <-> ( A. u A. x A. y ( ( u R x /\ u R y ) -> x = y ) /\ ,~ R e. Rels ) )

Proof

Step Hyp Ref Expression
1 cosselcnvrefrels2
 |-  ( ,~ R e. CnvRefRels <-> ( ,~ R C_ _I /\ ,~ R e. Rels ) )
2 cossssid3
 |-  ( ,~ R C_ _I <-> A. u A. x A. y ( ( u R x /\ u R y ) -> x = y ) )
3 2 anbi1i
 |-  ( ( ,~ R C_ _I /\ ,~ R e. Rels ) <-> ( A. u A. x A. y ( ( u R x /\ u R y ) -> x = y ) /\ ,~ R e. Rels ) )
4 1 3 bitri
 |-  ( ,~ R e. CnvRefRels <-> ( A. u A. x A. y ( ( u R x /\ u R y ) -> x = y ) /\ ,~ R e. Rels ) )