Metamath Proof Explorer


Theorem cosselcnvrefrels2

Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 25-Aug-2021)

Ref Expression
Assertion cosselcnvrefrels2
|- ( ,~ R e. CnvRefRels <-> ( ,~ R C_ _I /\ ,~ R e. Rels ) )

Proof

Step Hyp Ref Expression
1 elcnvrefrels2
 |-  ( ,~ R e. CnvRefRels <-> ( ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) /\ ,~ R e. Rels ) )
2 cossssid
 |-  ( ,~ R C_ _I <-> ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) )
3 2 anbi1i
 |-  ( ( ,~ R C_ _I /\ ,~ R e. Rels ) <-> ( ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) /\ ,~ R e. Rels ) )
4 1 3 bitr4i
 |-  ( ,~ R e. CnvRefRels <-> ( ,~ R C_ _I /\ ,~ R e. Rels ) )