Metamath Proof Explorer


Theorem cosselcnvrefrels2

Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 25-Aug-2021)

Ref Expression
Assertion cosselcnvrefrels2 R CnvRefRels R I R Rels

Proof

Step Hyp Ref Expression
1 elcnvrefrels2 R CnvRefRels R I dom R × ran R R Rels
2 cossssid R I R I dom R × ran R
3 2 anbi1i R I R Rels R I dom R × ran R R Rels
4 1 3 bitr4i R CnvRefRels R I R Rels