Metamath Proof Explorer


Theorem cosselcnvrefrels3

Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 30-Aug-2021)

Ref Expression
Assertion cosselcnvrefrels3 RCnvRefRelsuxyuRxuRyx=yRRels

Proof

Step Hyp Ref Expression
1 cosselcnvrefrels2 RCnvRefRelsRIRRels
2 cossssid3 RIuxyuRxuRyx=y
3 2 anbi1i RIRRelsuxyuRxuRyx=yRRels
4 1 3 bitri RCnvRefRelsuxyuRxuRyx=yRRels