Metamath Proof Explorer


Theorem cosselcnvrefrels4

Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 31-Aug-2021)

Ref Expression
Assertion cosselcnvrefrels4 RCnvRefRelsu*xuRxRRels

Proof

Step Hyp Ref Expression
1 cosselcnvrefrels2 RCnvRefRelsRIRRels
2 cossssid4 RIu*xuRx
3 2 anbi1i RIRRelsu*xuRxRRels
4 1 3 bitri RCnvRefRelsu*xuRxRRels