Metamath Proof Explorer


Theorem cosselcnvrefrels4

Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 31-Aug-2021)

Ref Expression
Assertion cosselcnvrefrels4 R CnvRefRels u * x u R x R Rels

Proof

Step Hyp Ref Expression
1 cosselcnvrefrels2 R CnvRefRels R I R Rels
2 cossssid4 R I u * x u R x
3 2 anbi1i R I R Rels u * x u R x R Rels
4 1 3 bitri R CnvRefRels u * x u R x R Rels