Metamath Proof Explorer


Theorem cosselcnvrefrels5

Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion cosselcnvrefrels5 R CnvRefRels x ran R y ran R x = y x R -1 y R -1 = R Rels

Proof

Step Hyp Ref Expression
1 cosselcnvrefrels2 R CnvRefRels R I R Rels
2 cossssid5 R I x ran R y ran R x = y x R -1 y R -1 =
3 2 anbi1i R I R Rels x ran R y ran R x = y x R -1 y R -1 = R Rels
4 1 3 bitri R CnvRefRels x ran R y ran R x = y x R -1 y R -1 = R Rels