Metamath Proof Explorer


Theorem cosselcnvrefrels5

Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion cosselcnvrefrels5 ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ∀ 𝑥 ∈ ran 𝑅𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ∧ ≀ 𝑅 ∈ Rels ) )

Proof

Step Hyp Ref Expression
1 cosselcnvrefrels2 ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) )
2 cossssid5 ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥 ∈ ran 𝑅𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) )
3 2 anbi1i ( ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) ↔ ( ∀ 𝑥 ∈ ran 𝑅𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ∧ ≀ 𝑅 ∈ Rels ) )
4 1 3 bitri ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ∀ 𝑥 ∈ ran 𝑅𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ∧ ≀ 𝑅 ∈ Rels ) )