Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosselcnvrefrels5 | ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ∀ 𝑥 ∈ ran 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑦 ] ◡ 𝑅 ) = ∅ ) ∧ ≀ 𝑅 ∈ Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosselcnvrefrels2 | ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) ) | |
| 2 | cossssid5 | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥 ∈ ran 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑦 ] ◡ 𝑅 ) = ∅ ) ) | |
| 3 | 2 | anbi1i | ⊢ ( ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) ↔ ( ∀ 𝑥 ∈ ran 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑦 ] ◡ 𝑅 ) = ∅ ) ∧ ≀ 𝑅 ∈ Rels ) ) |
| 4 | 1 3 | bitri | ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ∀ 𝑥 ∈ ran 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑦 ] ◡ 𝑅 ) = ∅ ) ∧ ≀ 𝑅 ∈ Rels ) ) |