Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 5-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cosselcnvrefrels5 | ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ∀ 𝑥 ∈ ran 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑦 ] ◡ 𝑅 ) = ∅ ) ∧ ≀ 𝑅 ∈ Rels ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosselcnvrefrels2 | ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) ) | |
2 | cossssid5 | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥 ∈ ran 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑦 ] ◡ 𝑅 ) = ∅ ) ) | |
3 | 2 | anbi1i | ⊢ ( ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) ↔ ( ∀ 𝑥 ∈ ran 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑦 ] ◡ 𝑅 ) = ∅ ) ∧ ≀ 𝑅 ∈ Rels ) ) |
4 | 1 3 | bitri | ⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ∀ 𝑥 ∈ ran 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑦 ] ◡ 𝑅 ) = ∅ ) ∧ ≀ 𝑅 ∈ Rels ) ) |