Metamath Proof Explorer


Theorem eldisjim2

Description: Alternate form of eldisjim . (Contributed by Peter Mazsa, 30-Dec-2024)

Ref Expression
Assertion eldisjim2 ( ElDisj 𝐴 → EqvRel ∼ 𝐴 )

Proof

Step Hyp Ref Expression
1 disjim ( Disj ( E ↾ 𝐴 ) → EqvRel ≀ ( E ↾ 𝐴 ) )
2 df-eldisj ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴 ) )
3 df-coels 𝐴 = ≀ ( E ↾ 𝐴 )
4 3 eqvreleqi ( EqvRel ∼ 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴 ) )
5 1 2 4 3imtr4i ( ElDisj 𝐴 → EqvRel ∼ 𝐴 )