Description: The "Divide et Aequivalere" Theorem: every disjoint relation generates equivalent cosets by the relation: generalization of the former prter1 , cf. eldisjim . (Contributed by Peter Mazsa, 3-May-2019) (Revised by Peter Mazsa, 17-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | disjim | ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjALTV4 | ⊢ ( Disj 𝑅 ↔ ( ∀ 𝑦 ∃* 𝑢 𝑢 𝑅 𝑦 ∧ Rel 𝑅 ) ) | |
2 | 1 | simplbi | ⊢ ( Disj 𝑅 → ∀ 𝑦 ∃* 𝑢 𝑢 𝑅 𝑦 ) |
3 | trcoss | ⊢ ( ∀ 𝑦 ∃* 𝑢 𝑢 𝑅 𝑦 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) | |
4 | 2 3 | syl | ⊢ ( Disj 𝑅 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) |
5 | eqvrelcoss3 | ⊢ ( EqvRel ≀ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) | |
6 | 4 5 | sylibr | ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅 ) |