Metamath Proof Explorer


Theorem disjim

Description: The "Divide et Aequivalere" Theorem: every disjoint relation generates equivalent cosets by the relation: generalization of the former prter1 , cf. eldisjim . (Contributed by Peter Mazsa, 3-May-2019) (Revised by Peter Mazsa, 17-Sep-2021)

Ref Expression
Assertion disjim ( Disj 𝑅 → EqvRel ≀ 𝑅 )

Proof

Step Hyp Ref Expression
1 dfdisjALTV4 ( Disj 𝑅 ↔ ( ∀ 𝑦 ∃* 𝑢 𝑢 𝑅 𝑦 ∧ Rel 𝑅 ) )
2 1 simplbi ( Disj 𝑅 → ∀ 𝑦 ∃* 𝑢 𝑢 𝑅 𝑦 )
3 trcoss ( ∀ 𝑦 ∃* 𝑢 𝑢 𝑅 𝑦 → ∀ 𝑥𝑦𝑧 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) )
4 2 3 syl ( Disj 𝑅 → ∀ 𝑥𝑦𝑧 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) )
5 eqvrelcoss3 ( EqvRel ≀ 𝑅 ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) )
6 4 5 sylibr ( Disj 𝑅 → EqvRel ≀ 𝑅 )