Metamath Proof Explorer


Theorem dfdisjALTV4

Description: Alternate definition of the disjoint relation predicate, cf. dffunALTV4 . (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion dfdisjALTV4 ( Disj 𝑅 ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 dfdisjALTV2 ( Disj 𝑅 ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅 ) )
2 cosscnvssid4 ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 )
3 2 anbi1i ( ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) )
4 1 3 bitri ( Disj 𝑅 ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) )