Metamath Proof Explorer


Theorem dffunALTV4

Description: Alternate definition of the function relation predicate, cf. dfdisjALTV4 . This is dffun6 . For the X axis and the Y axis you can convert the right side to ( A. x1 E* y1 x1 F y1 /\ Rel F ) . (Contributed by NM, 9-Mar-1995)

Ref Expression
Assertion dffunALTV4 ( FunALTV 𝐹 ↔ ( ∀ 𝑢 ∃* 𝑥 𝑢 𝐹 𝑥 ∧ Rel 𝐹 ) )

Proof

Step Hyp Ref Expression
1 dffunALTV2 ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹 ) )
2 cossssid4 ( ≀ 𝐹 ⊆ I ↔ ∀ 𝑢 ∃* 𝑥 𝑢 𝐹 𝑥 )
3 2 anbi1i ( ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹 ) ↔ ( ∀ 𝑢 ∃* 𝑥 𝑢 𝐹 𝑥 ∧ Rel 𝐹 ) )
4 1 3 bitri ( FunALTV 𝐹 ↔ ( ∀ 𝑢 ∃* 𝑥 𝑢 𝐹 𝑥 ∧ Rel 𝐹 ) )